

BESCHREIBUNG

Mit der Motorsteuerung 3CH 10 A können Sie bis zu drei Gleichstrommotoren über die Vollbrücken präzise ansteuern. Die integrierten Rampenfunktionen ermöglichen Ihnen ein sanftes Anfahren oder ein langsames Abbremsen der Motoren. Das Modul verfügt zusätzlich über 8 konfigurierbare Multifunktionseingänge sowie 2 stromgeregelte PWM-Ausgänge z.B. für die Ansteuerung zweier hydraulischer Proportionalventile.

Einbauansicht

Steckeransicht

TECHNISCHE DATEN

PRÜFNORMEN UND BESTIMMUNGEN

Gehäuse	PA66GF30	E1 Genehmigung	10 R - 06 10058			
Stecker	Delphi / Aptiv - 211PC249S0033	Elektrische Tests	Gem. ISO 16750-2 bzw4:			
Gewicht	290 g		Versorgungsspannungstest Kurzschlusstest			
Temperaturbereich nach ISO 16750-4	-40 °C+85 °C		Verpolungstest Unterbrechung Pin und Stecker			
Schutzart nach ISO 20653	IP6K8 bei korrekter Einbaulage (Stecker nach unten) und bei Verwendung von Schutzkappe und Wellrohr entsprechend Zubehörliste ACHTUNG! Befolgen Sie die entsprechenden Anweisungen!		Langzeit Überspannung bei T_{max} -20 °C Lagerungstest bei T_{max} und T_{min} Operationstest bei T_{max} und T_{min} Temperaturschritte Startpuls (ehem. Puls 4 gem. ISO 7637)			
Stromaufnahme	50 mA bei 12 V 33 mA bei 24 V		Puls 1, 2a, 2b, 3a, 3b			
Absicherung	max. Last, siehe S. 3		Gem. ISO 10605: ESD bis ± 8 kV auf Pins, alles andere ±			
Ein- / Ausgangskanäle	16 (8 Eingänge; 2 I/Os [PWM fähig,		15 kV			
(Gesamt)	mit Stromregelung für Ventile]; 6 Halbbrücken)	chemische Tests	Batterieflüssigkeit (22 h)			
Eingänge	2 I/Os (Analogeingänge 033,9 V) 8 Multifunktionseingänge mit Ana- logeingänge umschaltbar zwischen 016,9 V / 032,8 V Digitaleingänge Stromeingänge Sensoreingänge Frequenzeingänge	(bei Raumtempe- ratur, gebürstet)	Innenreiniger (2h) Glasreiniger (2h) Aceton (10 min) Ammonuimhaltiger Reiniger (22 h) Denaturierter Alkohol (10 min) Schweiß (22 h) Kosmetikprodukte (Nivea Creme, 22 h) Erfrischungsgetränk mit Koffein und Zucker			
Ausgänge	 2 I/Os (Digitalausgänge, PWM-fähig) Konfigurierbar: 6 Motor-Halbbrücken oder 3 Motor-Vollbrücken 		(Cola, 22 h) Sahne, Kaffeeweißer (22 h)			
Versorgungsspannung	832 V bzw. 14.532 V mit V _{REF} = 10 V (Code B bei 12 V, Code E bei	PROGRAMMIERUNG				
	24 V, nach ISO 16750-2)	Programmiersystem				
Überspannungsschutz	≥ 33 V	MRS APPLICS ST				
Ruhestrom	35 μA bei 12 V 75 μA bei 24 V	Toolplattform für ur	o ist die MRS-eigene Entwicklungs- und nsere Baugruppen. Programmieren Sie mit digen Software einfach und schnell Ihre			
Verpolschutz	ja		Ihre Applikation steht im Fokus.			
CAN Schnittstelle	CAN Interface 2.0 A/B, ISO 11898-2, ISO 11898-5, CAN-FD fähig					
LIN Schnittstelle	siehe Bestückungsvarianten					

DATENBLATT MOTORSTEUERUNG 3CH 10 A 1.162

ÜBERSICHT DER EINGÄNGE (BESTÜCKUNGSABHÄNGIG)

Pin A5, A6, B2, B3, B6, C2, C3, C4 (MULTI_IN)	Programmierbar als Analog- oder Digital- eingang Auflösung	12 Bit	Pin C6, C7 (IO_1, IO_0) (siehe <u>F</u>)	Programmierbar als Analog- oder Digital- eingang Auflösung	12 Bit				
Spannungseingang 016,9 V	Genauigkeit Eingangswiderstand Eingangsfrequenz	\pm 1,5 % full scale 34 kΩ $f_g^2 = 75$ Hz	Spannungseingang 033.9 V	Eingangswiderstand Eingangsfrequenz Abweichung	30 kΩ f _g ²= 170 Hz ≤ 3 %				
(siehe <u>A</u>) ¹	Umrechnungsfaktor	1 Digit ≈ 4,13 mV	¹ Standardkonfiguration	ration					
Spannungseingang 032,8 V (siehe <u>B</u>)	Eingangswiderstand Eingangsfrequenz Umrechnungsfaktor	28 kΩ f _g ²= 105 Hz 1 Digit ≈ 8,01 mV	² Grenzfrequenz (-3 d ³ Bei Nutzung der Sta ⁴ bei Nutzung des Pul						
Stromeingang 025 mA (siehe <u>C</u>)	Eingangswiderstand Umrechnungsfaktor	330 Ω gegen GND⁴ 1 mA ≈ 79 digits	V anliegen, andernfalls wird der pulldown aus Sicherheits den automatisch deaktiviert						
Sensoreingang (siehe <u>D</u>)	Eingangswiderstand	1 kΩ gegen VREF / KL30							
Digitaleingang ³	Eingangswiderstand Einschaltpegel Ausschaltpegel	34 kΩ 6.1 V ±0,3 V 4.0 V ±0,3 V							
Frequenzeingang 035 kHz (siehe <u>E</u>) ³	Eingangswiderstand Einschaltpegel Ausschaltpegel Mindestpulsbreite Messbereich PWM Abweichung	34 kΩ 3,8 V ±0,3 V 1,3 V ±0,3 V 4 μs 1598 % ± 3 %	-						

ÜBERSICHT DER AUSGÄNGE

Pin A3, A4, A7, B1, C1, C8	Schutzbeschaltung für induktive Lasten	Integriert	Pin C6, C7 IOs mit BTS	Schutzbeschaltung für induktive Lasten	Integriert	
Motorausgänge BTN9970LV	Unadonose religios- uner Sironi-	Diagnose Leitungs- bruch	Über Strom- rücklesung			
	Diagnose Kurz- schluss	Über Strom- rücklesung		Diagnose Kurz- schluss	Über Strom- rücklesung	
Motorausgang (siehe <u>G</u>)	Schaltspannung max. Laststrom Tastverhältnis PWM-Frequenz	832 V siehe Leis- tungstest (S. 3) 0100% bis 30 kHz	Digital, plusschaltend (High-Side; siehe E) inklusive INA-Stromrücklesung	Schaltspannung Schaltstrom Umrechnungsfaktor Abweichung Strom-	832 V DC siehe Leis- tungstest (S. 3) 1 Digit ≈ 1 mA für 800 mA5 A	
Kurzschlussfestig- keit gegen GND und U _B	Abschaltung der einzel l erfolgt durch Ausgangst	• •	PWM-Ausgang (siehe <u>F</u>)	rücklesung INA293 Ausgangsfrequenz Auflösung	± 3 % 1 Hz1 kHz 1 ‰	
Schutzbeschaltung Überlast	Übertemperaturabschal	tung integriert		Schaltstrom	siehe Leis- tungstest (S. 3)	
		$ \begin{array}{c} {\rm Kurzschlussfestig-} \\ {\rm keit~gegen~GND} \\ {\rm und~U_B} \end{array} $	Abschaltung der einzelnen Ausgänge erfolgt durch Ausgangstreiber			
		Schutzbeschaltung Überlast	Übertemperaturabschal	tung integriert		

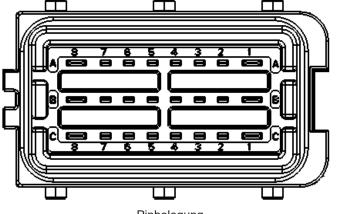
DATENBLATT MOTORSTEUERUNG 3CH 10 A 1.162

LEISTUNGSTESTS BEI $\mathsf{T_{*85\,^{\circ}C}}$ HSD- UND MOTOR-AUSGÄNGE

Test ohne PWM	Last	Dauer	Test mit PWM	PWM / DC	Last	Dauer
bei 28 V U _B	2 x BTS (C6, C7) je 6,7 A	Permanent	bei 28 V U _B	20 kHz / 96 %	1 x BTN als Vollbrücke (A3, A4 oder B1,	Permanent
bei 28 V U _B	3 x BTN als Vollbrücke (A3, A4, A7, B1, C1, C8) je 6,6 A	Permanent	bei 28 V U _B	20 kHz / 96 %	C1 oder A7, C8) 10 A 3 x BTN als Vollbrü- cke (A3, A4, A7, B1,	Permanent
bei 28 V U _B	1 x BTN als Vollbrücke (A3, A4 oder B1, C1 oder A7, C8) 12 A	Permanent	bei 28 V U _B	100 Hz / 90 %	C1, C8) je 6,1 A 2 x BTS (C6, C7) je 4,2 A	Permanent

gemessen bei +85°C, 28 V Versorgungsspannung, resistive Last gemessen bei +85°C, 28 V Versorgungsspannung, induktive Last

DATENBLATT MOTORSTEUERUNG 3CH 10 A 1.162



ANSCHLUSSBELEGUNG SPANNUNGSVERSORGUNG UND INTERFACES (BESTÜ-CKUNGSABHÄNGIG)

CITCITO CITIZEN			
Pin	Pin Beschreibung	Pin	Pin Beschreibung
A1 + A8	Versorgungsspannung / KL30	A2	LIN / VREF (Bestückungsabhängig, max. 500 mA)
B5	Zündung / KL15	B4	CAN-H
B7 + B8	Masse / KL31	C5	CAN-L

ANSCHLUSSBELEGUNG EIN- UND AUSGÄNGE

Pin	Signal	Pin Beschreibung	Pin	Signal	Pin Beschreibung			
A5	A5 AI_A_IN1 DI_AI_A_IN1 FREQ_A_IN1 DO_PD1 DO_PU1	Analogeingang 1 Digitaleingang 1 Frequenzeingang 1 Aktivierung Strom-Eingang Aktivierung Pull-up	C1	PWM_MOTOR_1_NEGATIVE AI_MOTOR_1_IS_NEGATIVE	Motorausgang 1 neg. Stromrücklesung 1 neg.			
			B1	PWM_MOTOR_1_POSITIVE AI_MOTOR_1_IS_POSITIVE	Motorausgang 1 pos. Stromrücklesung 1 pos.			
A6	DO_RS1 ALA INO	Bereichsumschaltung 017 / 32 V	A3	PWM_MOTOR_2_NEGATIVE AI_MOTOR_2_IS_NEGATIVE	Motorausgang 2 neg. Stromrücklesung 2 neg.			
AU	DI_AI_A_IN0 FREQ_A_IN0	Analogeingang 0 Digitaleingang 0 Frequenzeingang 0 Aktivierung Strom-Eingang Aktivierung Pull-up	A4	PWM_MOTOR_2_POSITIVE AI_MOTOR_2_IS_POSITIVE	Motorausgang 2 pos. Stromrücklesung 2 pos.			
	DO_PD0 DO_PU0		A7	PWM_MOTOR_3_NEGATIVE AI_MOTOR_3_IS_NEGATIVE	Motorausgang 3 neg. Stromrücklesung 3 neg.			
B2	DO_RS0 Bereichsumschaltung 017 / 32 V Al_A_IN4 DI_AI_A_IN4 PREQ_A_IN4 DO_PD4 DO_PD4 DO_PU4 DO_RS4 Bereichsumschaltung 017 / 32 V Analogeingang 4 Digitaleingang 4 Prequenzeingang 4 Aktivierung Strom-Eingang Aktivierung Pull-up Bereichsumschaltung 017 / 32 V	Analogeingang 4	C8	PWM_MOTOR_3_POSITIVE AI_MOTOR_3_IS_POSITIVE	Motorausgang 3 pos. Stromrücklesung 3 pos.			
		C6	AI_IO_1 AI_SNS1 AI_INA_OUT1 DI_AI_IO_1	Analogeingang IO1 Stromrücklesung IO1 INA Strommessung IO1 Digitaleingang IO1				
В3	AI_A_IN3 DI AI A IN3	Analogeingang 3 Digitaleingang 3		DO_PWM_HSD1 PWM_HSD1	Digitalausgang IO1 PWM-Ausgang IO1			
	FREQ_A_IN3 DO_PD3 DO_PU3 DO_RS3	Frequenzeingang 3 Aktivierung Strom-Eingang Aktivierung Pull-up Bereichsumschaltung 017 / 32 V	C7	AI_IO_0 AI_SNS0 AI_INA_OUT0 DI_AI_IO_0	Analogeingang IO0 Stromrücklesung IO0 INA Strommessung IO0 Digitaleingang IO0			
B6	Al_A_IN2	Analogeingang 2		DO_PWM_HSD0 PWM_HSD0	Digitalausgang IO1 PWM-Ausgang IO0			
	DI_AI_A_IN2 FREQ_A_IN2	Digitaleingang 2 Frequenzeingang 2	A2	DO_LIN_EN	Aktivierung LIN			
	DO_PD2 DO_PU2 DO_RS2	PU2 Aktivierung Pull-up						
C2	AI_A_IN7 DI_AI_A_IN7	Analogeingang 7 Digitaleingang 7	A	3 7 6 5 4 3				

Pinbelegung

DO RS5

FREQ_A_IN7 DO_PD7

DO_PU7

DO_RS7

AI_A_IN6

DO PU6

DO_RS6

AI_A_IN5

DI_AI_A_IN5

DI_AI_A_IN6

FREQ_A_IN6 DO_PD6

C3

C4

Aktivierung Pull-up

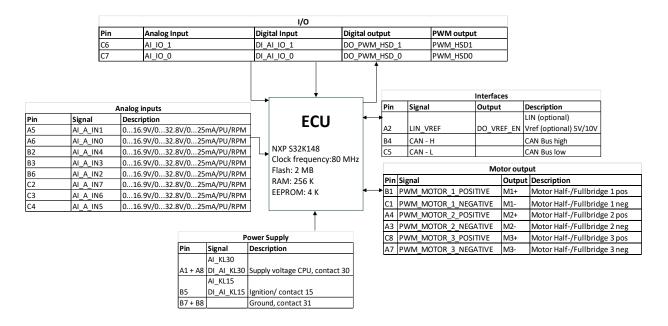
Frequenzeingang 7

Aktivierung Pull-up

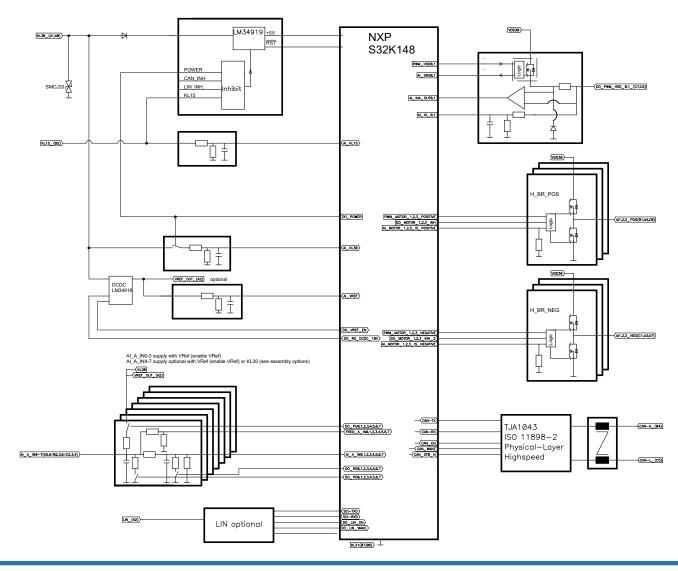
Analogeingang 6

Digitaleingang 6 Frequenzeingang 6

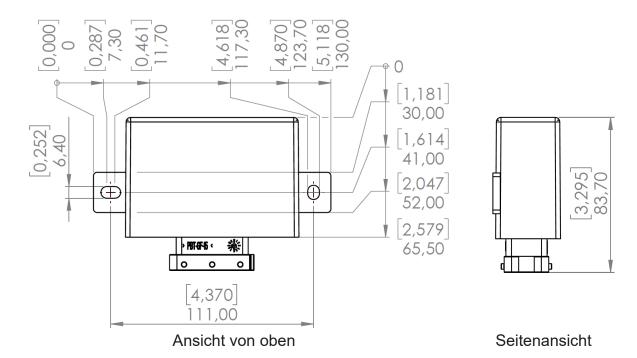
Aktivierung Strom-Eingang

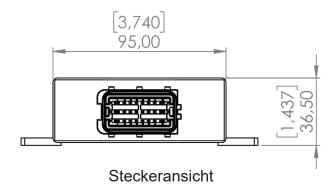

Aktivierung Strom-Eingang

Bereichsumschaltung 0...17 / 32 V


Bereichsumschaltung 0...17 / 32 V

PIN - ÜBERSICHT




BLOCK DIAGRAMM

TECHNISCHE ZEICHNUNG IN MM [INCH], TOLERANZEN NACH ISO 2768-1 V

DATENBLATT MOTORSTEUERUNG 3CH 10 A 1.162

BESTÜCKUNGSVARIANTEN UND BESTELLINFORMATIONEN

Zeichnungsnummer	Pin Nummerierung Eingänge						Aus	gänge	Schn	ittstellen	Bemerkungen
	A Spannung 016.9 V	B Spannung 032.8 V	C Strom 025 mA	D Sensor Eingänge 1 kΩ pull-up	E Frequenzein- gänge	I/Os (opt Analoge oder Digita mit P	eingang alausgang	G Motoraus- gänge	CAN (FD- fähig)	LIN	
1.162.300.0000	A5, A6, B2, B3, B6, C2, C3, C4	A5, A6, B2, B3, B6, C2, C3, C4	A5, A6, B2, B3, B6, C2, C3, C4	A5, A6, B2, B3, B6, C2, C3, C4 auf VREF	A5, A6, B2, B3, B6, C2, C3, C4	C6, C7		A3, A4, A7, B1, C1, C8	B4, C5	A2 (Master)	
1.162.304.1000	A5, A6, B2, B3, B6, C2, C3, C4	A5, A6, B2, B3, B6, C2, C3, C4	A5, A6, B2, B3, B6, C2, C3, C4	A5, A6, B3, B6 auf VREF; B2, C2, C3, C4 auf KL30	A5, A6, B2, B3, B6, C2, C3, C4	C6, C7		A3, A4, A7, B1, C1, C8	B4, C5	-	A2 = V _{REF}
1.162.202.1000	A5, A6, B2, B3, B6, C2, C3, C4	A5, A6, B2, B3, B6, C2, C3, C4	A5, A6, B2, B3, B6, C2, C3, C4	A5, A6, B3, B6 auf VREF; B2, C2, C3, C4 auf KL30	A5, A6, B2, B3, B6, C2, C3, C4	C6, C7		A3, A4, A7, B1, C1, C8	B4, C5	A2 (Mas- ter, 12 V)	

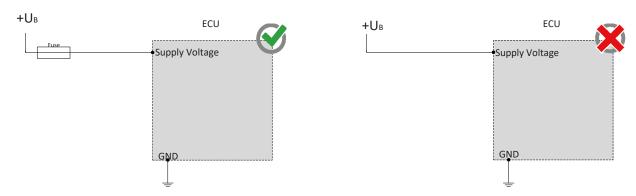
SCIP-Nummer: 559bbdd6-588b-47bd-86e8-17afe4f8212e

Seite 7 von 12 ©MRS Electronic GmbH & Co. KG Änderungen vorbehalten Version 1.5

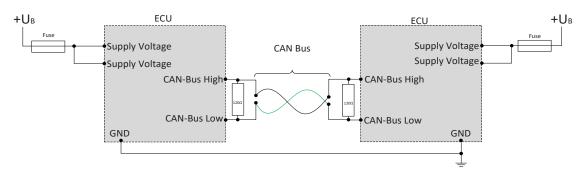
DATENBLATT MOTORSTEUERUNG 3CH 10 A 1.162

ZUBEHÖR

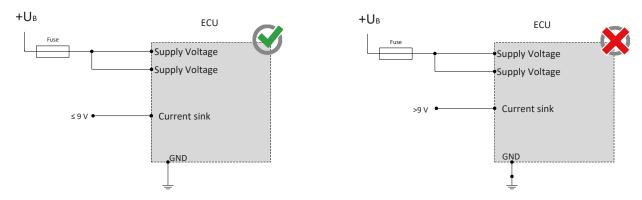
Beschreibung	Bestellnummer
Programmiertool MRS Applics Studio	1.100.200.01
Kabelsatz zum Programmieren	110490
Steckerpaket	110421
PCAN FD USB Adapter	503750
Schutzkappe	111441
Wellrohr (Außendurchmesser: 21,2 mm; Innendurchmesser: 16,5 mm)	Im freien Handel zu beziehen

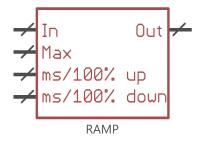

HERSTELLER

MRS Electronic GmbH & Co. KG Klaus-Gutsch-Str. 7 78628 Rottweil Germany

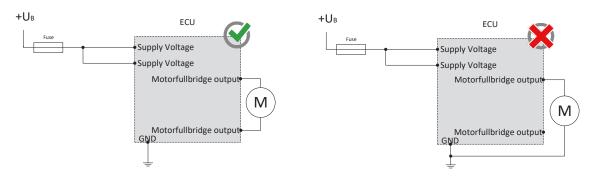


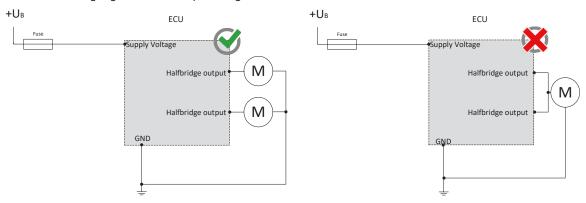
HINWEISE ZUR BESCHALTUNG UND LEITUNGSFÜHRUNG


Die Steuerung muss entsprechend gegen Überlast abgesichert werden (siehe Leistungsdaten)

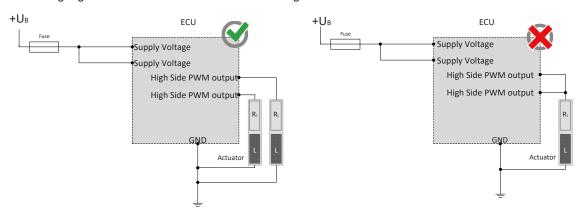

Die CAN-Bus Kommunikation stellt die Hauptkommunikation zwischen Steuergerät und Fahrzeug dar. Schließen Sie daher den CAN-Bus mit besonderer Sorgfalt an und überprüfen Sie die korrekte Kommunikation mit dem Fahrzeug, um ungewünschtes Verhalten zu vermeiden.

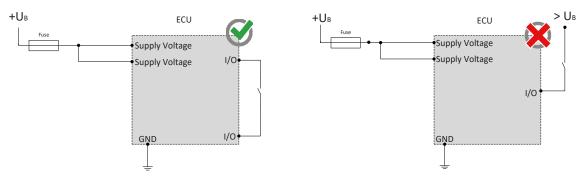
Bei Nutzung des Pull-Down-Widerstandes an den Analogeingängen (Aktivierung DO_PD0...DO_PD7) darf an die Eingänge keine Spannung größer als 9 V angeschlossen werden.


Um eine Beschädigung der Hardware zu verhindern ist eine Rampenfunktion z.B. über den grafischen Programmierbaustein "Ramp" zu nutzen. Die Beschreibung hierzu ist im Applics Studio hinterlegt.



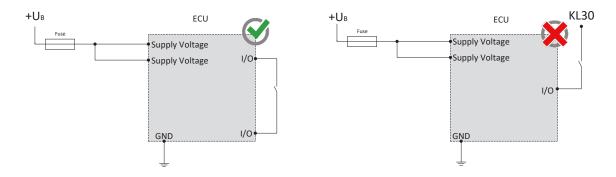
HINWEISE ZUR BESCHALTUNG UND LEITUNGSFÜHRUNG


Die Vollbrücken-Motorausgänge dürfen nur gegeneinander verschalten werden.


Halbbrücken-Ausgänge dürfen nicht parallel geschalten werden

PWM Ausgänge dürfen nicht miteinander verbunden / gebrückt werden.

Die kombiniert nutzbaren Pins (I/Os) dürfen extern nicht gegen eine höhere Spannung als die Versorgungsspannung geschalten werden.



DATENBLATT MOTORSTEUERUNG 3CH 10 A 1.162

HINWEISE ZUR BESCHALTUNG UND LEITUNGSFÜHRUNG

Die I/Os dürfen nicht gegen KL30 angeschlossen werden, da sonst der Verpolschutz nicht mehr gewährleistet werden kann.

Zur Einhaltung der IP Schutzklasse muss der Kabelbaum am Gegenstecker durch das Wellrohr geführt und der Gegenstecker mit dem Steuergerät verbunden werden. Die Schutzkappe wird anschließend über Gegenstecker und Wellrohr geschlossen.

DATENBLATT MOTORSTEUERUNG 3CH 10 A 1.162

SICHERHEITS- UND MONTAGEHINWEISE

Lesen Sie diese Hinweise unbedingt gründlich und vollständig durch, bevor Sie mit dem Modul arbeiten. <u>Beachten und befolgen Sie die Anweisungen der Betriebsanleitung</u>; siehe www.mrs-electronic.de

Qualifikation des Personals: Nur entsprechend qualifiziertes Fachpersonal darf an diesem Modul oder in dessen Nähe arbeiten.

SICHERHEIT

WARNUNG! Gefahr durch Fehlfunktionen am Gesamtsystem.

Unvorhergesehene Reaktionen oder Fehlfunktionen am Gesamtsystem können die Sicherheit von Mensch oder Maschine gefährden.

Stellen Sie sicher, dass das Modul mit der korrekten Software ausgestattet ist, sowie Beschaltung und Parametrierung der Hardware entsprechen.

WARNUNG! Gefahr durch ungeschützte bewegte Komponenten.

Bei der Inbetriebnahme und Wartung des Moduls können vom Gesamtsystem unvorhergesehene Gefahren ausgehen.

- · Schalten Sie vor jeglichen Arbeiten das Gesamtsystem aus und sichern Sie es gegen unbeabsichtigtes Wiedereinschalten.
- Stellen vor Beginn der Inbetriebnahme sicher, dass sich das Gesamtsystem und Teile des Systems in einem sicheren Zustand befinden.
- Das Modul darf nie unter Last und auch nicht unter Spannung verbunden und getrennt werden.

VORSICHT! Verbrennungsgefahr am Gehäuse.

Das Gehäuse des Moduls kann eine erhöhte Temperatur aufweisen.

• Berühren Sie das Gehäuse nicht und lassen Sie vor Arbeiten am System alle Systemkomponenten abkühlen.

BESTIMMUNGSGEMÄSSE VERWENDUNG

Das Modul dient zur Steuerung oder Schaltung eines oder mehreren elektrischen Systemen oder Subsystemen in Kraftfahrzeugen und Arbeitsmaschinen und darf nur für diesen Zweck eingesetzt werden. Das Modul darf nur im Industriebereich betrieben werden.

WARNUNG! Gefahr durch nicht bestimmungsgemäße Verwendung!

Das Modul ist nur für den Einsatz in Kraftfahrzeugen und mobilen Arbeitsmaschinen bestimmt.

- Die Anwendung in sicherheitsrelevanten Systemteile für Personenschutz ist nicht zulässig.
- Verwenden Sie das Modul nicht in explosionsgefährdeten Bereichen.

Sie handeln bestimmungsgemäß:

- wenn der Betrieb des Moduls innerhalb des zugehörigen Datenblatt spezifizierten und freigegebenen Betriebsbereiche erfolgt.
- wenn Sie sich strikt an diese Hinweise halten und keine eigenmächtigen Fremdhandlungen vornehmen, die Sicherheit von Personen und die Funktionstüchtigkeit des Moduls gefährden.

Pflichten der Hersteller von Gesamtsystemen

Systementwicklungen, Installation und Inbetriebnahme von elektrischen Systemen dürfen nur von ausgebildeten und erfahrenem Personal vorgenommen werden, die mit dem Umgang der eingesetzten Komponente sowie des Gesamtsystems hinreichend vertraut sind.

Es muss sichergestellt werden, dass nur funktionstüchtige Module eingesetzt werden. Das Modul muss bei Ausfall bzw. Fehlverhalten sofort ausgetauscht werden.

Es muss sichergestellt werden, dass die Beschaltung und Programmierung des Moduls bei einem Ausfall oder einer Fehlfunktion nicht zu sicherheitsrelevanten Fehlfunktionen des Gesamtsystems führt.

Der Hersteller des Gesamtsystems ist verantwortlich für den korrekten Anschluss der gesamten Peripherie (z.B. Kabelquerschnitte, Stecker, Vercrimpungen, richtige Auswahl/Anschluss von Sensoren/Aktoren).

Das Modul darf nicht geöffnet werden. Am Modul dürfen keine Änderungen bzw. Reparaturen durchgeführt werden.

Montage

Der Montageort muss so gewählt sein, dass das Modul möglichst geringer mechanischer und thermischer Belastung ausgesetzt ist. Das Modul darf keiner chemischen Belastung ausgesetzt sein.

Das Modul darf nach Herabfallen nicht mehr verwendet werden und muss zur Überprüfung an MRS zurück gesendet werden.

Montieren Sie das Modul so, dass die Stecker nach unten zeigen. So kann gegebenenfalls Kondenswasser abfließen. Durch Einzelabdichtung der Kabel/Adern muss sichergestellt werden, dass kein Wasser in das Modul gelangen kann.

Inbetriebnahme

Die Inbetriebnahme darf nur von qualifiziertem Personal durchgeführt werden. Die Inbetriebnahme darf nur erfolgen, wenn der Zustand des Gesamtsystems den geltenden Richtlinien und Vorschriften entspricht.

STÖRUNGSBEHEBUNG UND WARTUNG

HINWEIS Das Modul ist wartungsfrei und darf nicht geöffnet werden!

Weißt das Modul Beschädigungen an Gehäuse, Rastnasen, Dichtungen, Flachsteckern auf, muss das Modul außer Betrieb genommen werden.

Die Störungsbehebung und Reinigungsarbeiten dürfen nur im spannungslosen Zustand durchgeführt werden. Entfernen Sie das Modul zur Störungsbehebung und Reinigung. Beachten Sie die Hinweise in den anderen technischen Unterlagen.

Prüfen Sie die Unversehrtheit des Moduls sowie alle Flachstecker, Anschlüsse und Pins auf mechanische Schäden, Schäden durch Überhitzung, Isolationsschäden und Korrosion. Prüfen Sie bei Fehlschaltungen die Software, Beschaltung und Parametrierung.

Reinigen Sie das Modul nicht mit Hochdruckreinigern oder Dampfstrahlern. Verwenden Sie keine aggressive Lösungs- oder Scheuermittel.