

Steckeransicht

BESCHREIBUNG

Die Micro SPS CAN ist eine Kleinsteuerung für automotive Anwendungen. Freie Konfigurier-, Parametrier- und Programmierbarkeit bieten vielfältige Einsatzmöglichkeiten im Kfz-Bereich. Ansteuerung und Auslesen erfolgen über den CAN-Bus (ISO 11898-2). Freescale Prozessor mit Flash-Technologie (Option der Mehrfachprogrammierung).

TECHNISCHE DATEN

PRÜFNORMEN UND BESTIMMUNGEN

Gehäuse	Kunststoff PA66GF30	Е
Stecker	Bodenplatte 9 polig	E
Gewicht	31 g	
Temperaturbereich nach ISO 16750-4	-40 °C+85 °C	
Schutzart nach ISO 20653	IP40 mit Potentiometer; IP6K8 ohne Potentiometer und mit wasserdichtem Stecksockel	
Stromaufnahme	27 mA	
Absicherung	Abhängig von der Bestückungsvariante vgl. S. 7/8	
Ein- / Ausgangskanäle (Gesamt)	Abhängig von der Bestückungsvariante, vgl. S. 7/8	
Eingänge	Abhängig von der Bestückungsvariante: Analog Eingang (011,4 V) Digital, positive Gebersignale Frequenzeingang	PI
Ausgänge	Abhängig von der Bestückungsvariante: Digital, plusschaltend (High-Side oder Relais-Ausgang) PWM-Ausgang (3500 Hz)	M D To
Versorgungsspannung	Abhängig von der Bestü- ckungsvariante: 12 V (Code C) und/oder 24 V (Code F) nach ISO 16750-2	ur M
Überspannungsschutz	≥ 33 V	
Ruhestrom	Abhängig von der Bestückungsvariante: vgl. S. 7/8	
Verpolschutz	ja	
CAN Schnittstellen	CAN Interface 2.0 A/B, ISO 11898-2:2003	

E1 Genehmigung	ECE R10 06 7362
Elektrische Tests	Gem. ISO 16750-2 bzw4: Kurzschlusstest Jump-start (12 V Variante) Verpolungstest Unterbrechung Pin und Stecker Langzeit Überspannung bei T _{max} -20 °C Lagerungstest bei T _{max} und T _{min} Operationstest bei T _{max} und T _{min} Überlagernde Wechselspannung Langsames absinken und ansteigen der Versorgungsspannung Kurzzeitiger Spannungsabfall Reset Verhalten bei Spannungseinbruch
	Gem. ISO 7637-2: Puls 1, 2a, 2b, 3a, 3b

PROGRAMMIERUNG

Programmiersystem

MRS APPLICS STUDIO

Das Applics Studio ist die MRS-eigene Entwicklungs- und Toolplattform für unsere Baugruppen. Programmieren Sie mit unserer eigenständigen Software einfach und schnell Ihre MRS-Steuerungen. Ihre Applikation steht im Fokus.

ÜBERSICHT DER EINGÄNGE (BESTÜCKUNGSABHÄNGIG)

Pin X (1)	Programmierbar als Analog- oder Digital- eingang Auflösung Genauigkeit	12 Bit ± 1% full scale	Pin 15 (4) ²	Programmierbar als Analog- oder Digital- eingang Auflösung Genauigkeit	12 Bit ± 1% full scale
Spannungseingang 011.4 V (siehe <u>A</u>)	Eingangswiderstand Eingangsfrequenz Abweichung	22,6 k Ω f _g ¹ = 60 Hz ± 2 %	Spannungseingang 011.4 V (siehe <u>A</u>)	Eingangswiderstand Eingangsfrequenz Abweichung	21,4 k Ω f _g ¹ = 65 Hz ± 10 %
Digitaleingang Positiv (siehe <u>C</u>)	Eingangswiderstand Eingangsfrequenz Einschaltpegel	22,6 k Ω f _g ¹ = 60 Hz 6,5 V	Spannungseingang 033.6 V (siehe <u>Besonderheiten</u>)	Eingangswiderstand Eingangsfrequenz Abweichung	$65 kΩ$ $f_g^{1} = 46 Hz$ ± 10 %
Frequenzeingang (siehe <u>B</u>)	Ausschaltpegel Eingangswiderstand Eingangsfrequenz Einschaltpegel Ausschaltpegel	5 V 22,6 kΩ bis ≤ 2.2 kHz 6,5 V 5 V	Digitaleingang Positiv (siehe <u>C</u>)	Eingangswiderstand Eingangsfrequenz Einschaltpegel Ausschaltpegel	21,4 kΩ f _g ¹= 65 Hz 6,7 V 6,6 V
¹ Grenzfrequenz (-3 d	. •	J V	Pin C (3) nur bei Bestü- ckungsvariante S21/S22	Programmierbar als Analog- oder Digital- eingang Auflösung Genauigkeit	12 Bit ± 1% full scale
			Spannungseingang 011.4 V (siehe A)	Eingangswiderstand Eingangsfrequenz Abweichung	21,4 kΩ f _g ¹ = 65 Hz ± 2 %
			Digitaleingang Positiv (siehe <u>C</u>)	Eingangswiderstand Eingangsfrequenz Einschaltpegel Ausschaltpegel	21,4 kΩ f _g ¹= 65 Hz 6,5 V 5 V

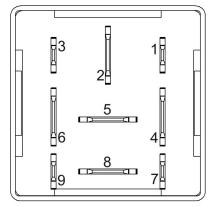
ÜBERSICHT DER AUSGÄNGE (BESTÜCKUNGSABHÄNGIG)

Pin 87, 87A Relais Variante			Pin 87, 87A Highside-Treiber	Diagnose Leitungsbruch	Über Stromrückle- sung		
Laststrom bei 23 °C (Relais, siehe	NO (Schließer) NC (Öffner)	15 A 10 A	Variante VNQ5050	Diagnose Kurzschluss	Über Stromrückle- sung		
D) Laststrom bei 85 °C (Relais, siehe	NO (Schließer) NC (Öffner)	10 A 5 A	Digital, plusschal- tend (High-Side; siehe E)	Schaltspannung Schaltstrom	9-32 V DC Siehe Leistungstests		
<u>D</u>)	Absicherung	max. 15 A	_ ,	Stromrücklesung über	(ANA_I_OUT_87A ANA_I_OUT_87)		
	, we continued the second	max. 1071	Kurzschluss-	Eigensicherung durch Übertemperatur-			
Pin C	Schutz für induktive Nicht Lasten vorhanden,		schutz gegen GND und U _B	schutz, latch-off kann durch Softwareap- plikation realisiert werden			
		muss extern abgesichert werden (Freilaufdiode)					
Digitalausgang (open collector Ausgang)	max. Leistung	2 W ³					

² Bei Varianten mit Ruhestrom und aktiviertem DO POWER oder CAN INH können die Werte abweichen.

³ Bei Nutzung einer LED glimmt diese durch den Leckstrom auch im ausgeschaltetem Zustand.

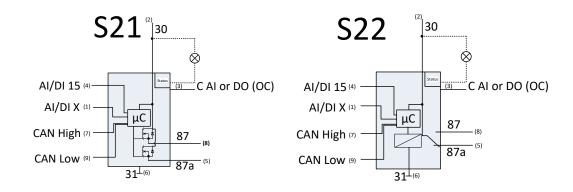
DAUERLEISTUNGSTEST HIGH-SIDE TREIBER VNQ5050 BEI T_{MAX} = 85 °C S21

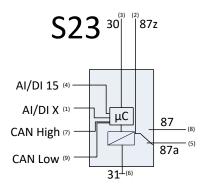

Messung Nr.	87	87a	Summenstrom	bestanden
1	2,5 A	2,5 A	5 A	ja
2	3,5 A	3,5 A	7 A	ja
3	4 A	4 A	8 A	ja
4	4,5 A	4,5 A	9 A	ja
5	3 A	5 A	8 A	ja
6	6 A	2 A	8 A	ja
7	5 A	5 A	10 A	nein, nicht auf Dauer geeignet

ANSCHLUSSBELEGUNG SPANNUNGSVERSORGUNG UND INTERFACES

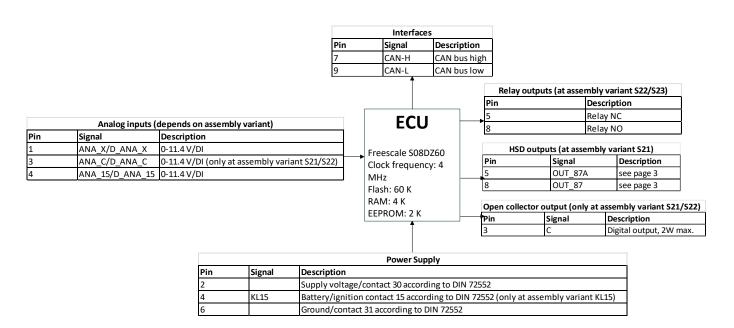
Pin	Pin Beschreibung	Pin	Pin Beschreibung
2	Betriebsspannung	6	Masse/GND
4	Klemme 15/Zündung/Analog-Digi-	7	CAN-Bus High
	taleingang	9	CAN-Bus Low

ANSCHLUSSBELEGUNG EIN- UND AUSGÄNGE

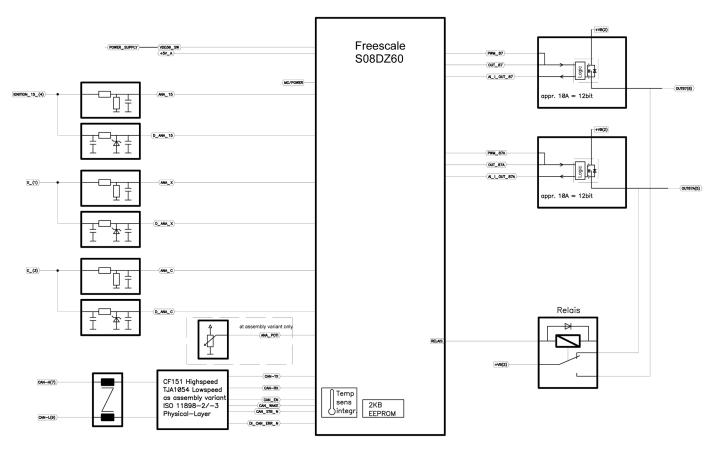

Pin	Programm Signal	Pin Beschreibung	Pin	Programm Signal	Pin Beschreibung
1	ANA_X D_ANA_X	Analogeingang X 0-11,4 V oder Digitaleingang X oder	4	ANA_15 D_ANA_15	Analogeingang 15 0-11.4V oder Digitaleingang 15
		Frequenzeingang (Bestückungsvariante) 5		OUT_87A	NC-Ausgang Relais oder HSD Bei Bestückungsvariante mit
3	ANA_C D_ANA_C	Analogeingang C 0-11,4 V oder Digitaleingang C oder		ANA_I_OUT_87A	VNQ5050: Stromrücklesung
	С	Digitalausgang C (max. 2W)	. 8	OUT_87 ANA_I_OUT_87	NO-Ausgang Relais oder HSD Bei Bestückungsvariante mit VNQ5050: Stromrücklesung



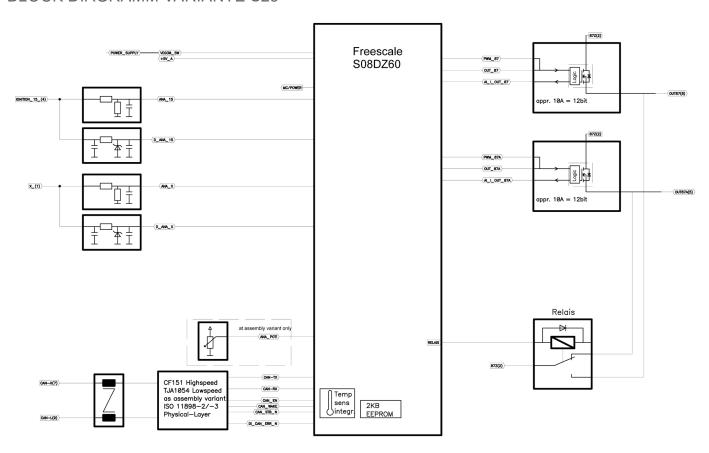
Pingelegung, Ansicht von unten



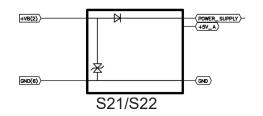
ANSCHLUSSBILDER

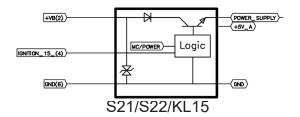


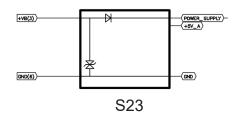
PIN - ÜBERSICHT

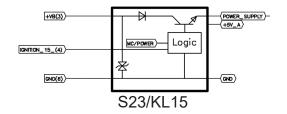


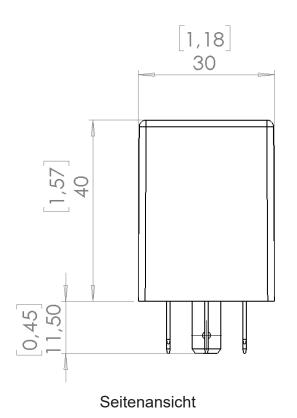
BLOCK DIAGRAMM VARIANTE S21/S22

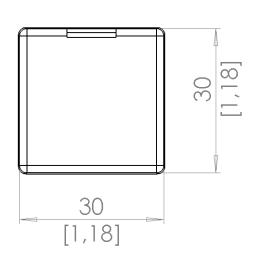



BLOCK DIAGRAMM VARIANTE S23




VERSORGUNGSSPANNUNGSVARIANTEN ZU VARIANTE S21/S22




VERSORGUNGSSPANNUNGSVARIANTEN ZU VARIANTE S23

TECHNISCHE ZEICHNUNG IN MM [INCH], TOLERANZEN NACH ISO 2768-1 V

Ansicht von oben

DATENBLATT MICRO SPS CAN 1.107

BESTÜCKUNGSVARIANTEN UND BESTELLINFORMATIONEN MIT RELAIS-AUSGANG

Bestellnum- mer	Versor- gungs- spannung	Ruhe- strom bei 12 V	Ruhe- strom bei 24 V	Stromauf- nahme bei 12 V	Stromauf- nahme bei 24 V	Pin Nummo	Pin Nummerierung der Eingänge		Pin Nummerierung der Ausgänge	CAN Bus	Besonderheiten
	Siehe Seite 4 oder 6	Angaben in μA	Angaben in µA	Angaben in mA ± 2 mA	Angaben in mA ± 2 mA	A Spannung 0 – 11.4 V	B Frequenz Hz	C Digital- eingang	D Relaisausgänge	High- Speed	
1.107.110.00	12 V/S22	-	-	27	-	1,3,4		1,3,4	5,8	Х	
1.107.110.01	12 V/S22	-	-	27	-	3,4	1	1,3,4	5,8	Х	
1.107.110.03	12 V/S22	-	-	27	-	3,4	1	1,3,4	5,8	Х	Mit Potentiometer
1.107.110.0A	12 V/S22	-	-	27	-	3,4	1	1,3,4	5,8	Х	Pin 4: 0-33,6 V
1.107.112.00	12 V/S23	-	-	27	-	1,4		1,4	5,8 (potentialfrei)	Х	
1.107.114.00	12 V/S23/ KL15	1063	-	27	-	1		1	5,8 (potentialfrei)	Х	Pin 4 zur Spannungsüberwachung bis 11.4 V verwendbar
1.107.114.09	12 V/S23/ KL15	259	-	27	-	1		1	5,8 (potentialfrei)	Х	Pin 4 zur Spannungsüberwachung bis 11.4 V verwendbar
1.107.210.00	24 V/S22	-	-	-	27	1,3,4		1,3,4	5,8	Х	
1.107.211.08	24 V/S22/ KL15	N/A		-	27	1	3	1,3	5,8	Х	Pin 4 zur Spannungsüberwachung bis 11.4 V verwendbar
1.107.212.00	24 V/S23	-	-	-	27,2	1,4		1,4	5,8 (potentialfrei)	Х	
1.107.212.01	24 V/S23	-	-	-	26,1	4	1	1,4	5,8 (potentialfrei)	Х	
1.107.212.04	24 V/S23	-	-	-	37,6	1,4		1,4	5,8 (potentialfrei)	Х	120Ω CAN-Bus Abschlusswider- stand integriert

SCIP-Nummer: c863a8eb-b3a8-4959-ad25-b1d7bfed4e1c

Seite 7 von 11 ©MRS Electronic GmbH & Co. KG Änderungen vorbehalten Version 3.8

MRS ELECTRONIC

DATENBLATT MICRO SPS CAN 1.107

BESTÜCKUNGSVARIANTEN UND BESTELLINFORMATIONEN MIT HIGH-SIDE AUSGANG

Bestellnummer	Versor- gungs- spannung	Ruhe- strom bei 12 V	Ruhe- strom bei 24 V	Stromauf- nahme bei 12 V	Stromauf- nahme bei 24 V	Pin Nummerierung der Eingänge				nerierung der sgänge	CAN Bus	Besonderheiten
	Siehe Seite 4 oder 6	Angaben in μA ± 10 μA	Angaben in μA ± 10 μA	Angaben in mA ± 2 mA	Angaben in mA ± 2 mA	A Spannung 0 – 11.4 V	B Frequenz Hz	C Digital- eingang	E High-Side Ausgänge	F PWM ≤ 500 Hz	High- Speed	
1.107.310.001	9-32 V/S21	-	-	23	24	1,3,4		1,3,4	5,8	5,8	Х	
1.107.310.061	9-32 V/S21	-	-	23	24	3,4	1,4	1,3,4	5,8	5,8	Χ	
1.107.310.071	9-32 V/S21	-	-	23	24	3,4	1	1,3,4	5,8	5,8	X	Frequenzeingang mit 5 V Amplitude
1.107.311.001	9-32 V/ S21/KL15	250	400	23	24	1,3		1,3	5,8	5,8	Х	Pin 4 zur Spannungs- überwachung bis 11.4 V verwendbar
1.107P.310.001	9-32 V/S21	-	-	23	24	1,3,4		1,3,4	5,8	5,8	Х	CANopen

SCIP-Nummer: ed9d45e0-5ba3-48c7-b5a1-3b54f9b15e10

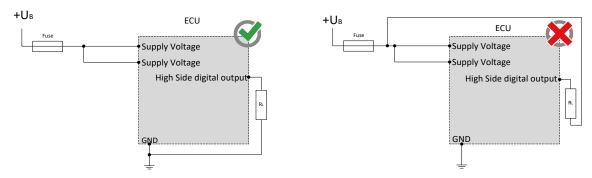
Seite 8 von 11 ©MRS Electronic GmbH & Co. KG Änderungen vorbehalten Version 3.8

MRS ELECTRONIC

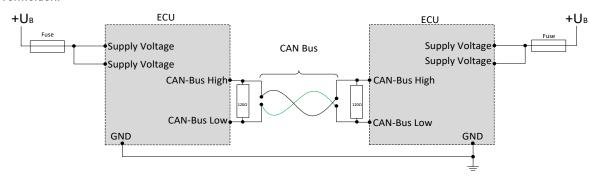
DATENBLATT MICRO SPS CAN 1.107

ZUBEHÖR

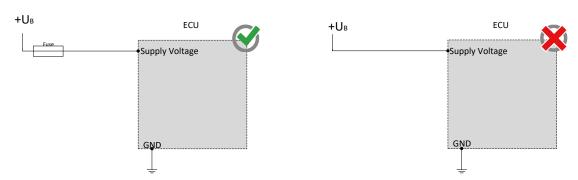
Bezeichnung	Bestellnummer
Starter-Kit µSPS CAN	1.100.110.22
Programmiertool MRS Developer Studio	1.100.100.09
PCAN-USB Interface	105358
Kabelsatz zum Programmieren	109446
Stecksockel	1.017.002.00
Stecksockel wasserdicht 40 mm	1.017.010.40
Flachsteckhülsen 6,3 mm/1,5-2,5 mm²	103064
Flachsteckhülsen 2,8 mm/0,5-1,0 mm²	105292

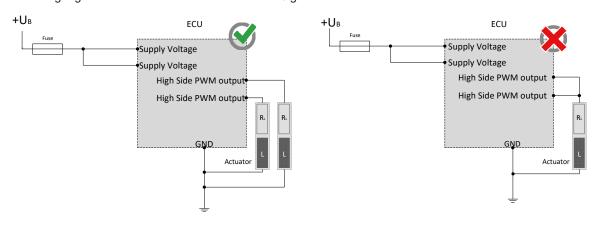

HERSTELLER

MRS Electronic GmbH & Co. KG Klaus-Gutsch-Str. 7 78628 Rottweil



HINWEISE ZUR BESCHALTUNG UND LEITUNGSFÜHRUNG


Higside-Ausgänge dürfen nur gegen Masse geschaltet werden.


Die CAN-Bus Kommunikation stellt die Hauptkommunikation zwischen Steuergerät und Fahrzeug dar. Schließen Sie daher den CAN-Bus mit besonderer Sorgfalt an und überprüfen Sie die korrekte Kommunikation mit dem Fahrzeug, um ungewünschtes Verhalten zu vermeiden.

Die Steuerung muss entsprechend gegen Überlast abgesichert werden (siehe Leistungsdaten)

PWM Ausgänge dürfen nicht miteinander verbunden / gebrückt werden.

MRS ELECTRONIC

DATENBLATT MICRO SPS CAN 1.107

SICHERHEITS- UND MONTAGEHINWEISE

Lesen Sie diese Hinweise unbedingt gründlich und vollständig durch, bevor Sie mit dem Modul arbeiten. <u>Beachten und befolgen Sie die Anweisungen der Betriebsanleitung; siehe www.mrs-electronic.com</u>

Qualifikation des Personals: Nur entsprechend qualifiziertes Fachpersonal darf an diesem Modul oder in dessen Nähe arbeiten.

SICHERHEIT

WARNUNG! Gefahr durch Fehlfunktionen am Gesamtsystem.

Unvorhergesehene Reaktionen oder Fehlfunktionen am Gesamtsystem können die Sicherheit von Mensch oder Maschine gefährden.

• Stellen Sie sicher, dass das Modul mit der korrekten Software ausgestattet ist, sowie Beschaltung und Parametrierung der Hardware entsprechen.

WARNUNG! Gefahr durch ungeschützte bewegte Komponenten.

Bei der Inbetriebnahme und Wartung des Moduls können vom Gesamtsystem unvorhergesehene Gefahren ausgehen.

- · Schalten Sie vor jeglichen Arbeiten das Gesamtsystem aus und sichern Sie es gegen unbeabsichtigtes Wiedereinschalten.
- Stellen vor Beginn der Inbetriebnahme sicher, dass sich das Gesamtsystem und Teile des Systems in einem sicheren Zustand befinden.
- · Das Modul darf nie unter Last und auch nicht unter Spannung verbunden und getrennt werden.

VORSICHT! Verbrennungsgefahr am Gehäuse.

Das Gehäuse des Moduls kann eine erhöhte Temperatur aufweisen.

• Berühren Sie das Gehäuse nicht und lassen Sie vor Arbeiten am System alle Systemkomponenten abkühlen.

BESTIMMUNGSGEMÄSSE VERWENDUNG

Das Modul dient zur Steuerung oder Schaltung eines oder mehreren elektrischen Systemen oder Subsystemen in Kraftfahrzeugen und Arbeitsmaschinen und darf nur für diesen Zweck eingesetzt werden. Das Modul darf nur im Industriebereich betrieben werden.

WARNUNG! Gefahr durch nicht bestimmungsgemäße Verwendung!

Das Modul ist nur für den Einsatz in Kraftfahrzeugen und mobilen Arbeitsmaschinen bestimmt.

- Die Anwendung in sicherheitsrelevanten Systemteile für Personenschutz ist nicht zulässig.
- Verwenden Sie das Modul nicht in explosionsgefährdeten Bereichen.

Sie handeln bestimmungsgemäß:

- wenn der Betrieb des Moduls innerhalb des zugehörigen Datenblatt spezifizierten und freigegebenen Betriebsbereiche erfolgt.
- wenn Sie sich strikt an diese Hinweise halten und keine eigenmächtigen Fremdhandlungen vornehmen, die Sicherheit von Personen und die Funktionstüchtigkeit des Moduls gefährden.

Pflichten der Hersteller von Gesamtsystemen

Systementwicklungen, Installation und Inbetriebnahme von elektrischen Systemen dürfen nur von ausgebildeten und erfahrenem Personal vorgenommen werden, die mit dem Umgang der eingesetzten Komponente sowie des Gesamtsystems hinreichend vertraut sind.

Es muss sichergestellt werden, dass nur funktionstüchtige Module eingesetzt werden. Das Modul muss bei Ausfall bzw. Fehlverhalten sofort ausgetauscht werden.

Es muss sichergestellt werden, dass die Beschaltung und Programmierung des Moduls bei einem Ausfall oder einer Fehlfunktion nicht zu sicherheitsrelevanten Fehlfunktionen des Gesamtsystems führt.

Der Hersteller des Gesamtsystems ist verantwortlich für den korrekten Anschluss der gesamten Peripherie (z.B. Kabelquerschnitte, Stecker, Vercrimpungen, richtige Auswahl/Anschluss von Sensoren/Aktoren).

Das Modul darf nicht geöffnet werden. Am Modul dürfen keine Änderungen bzw. Reparaturen durchgeführt werden.

Montage

Der Montageort muss so gewählt sein, dass das Modul möglichst geringer mechanischer und thermischer Belastung ausgesetzt ist. Das Modul darf keiner chemischen Belastung ausgesetzt sein.

Das Modul darf nach Herabfallen nicht mehr verwendet werden und muss zur Überprüfung an MRS zurück gesendet werden.

Montieren Sie das Modul so, dass die Stecker nach unten zeigen. So kann gegebenenfalls Kondenswasser abfließen. Durch Einzelabdichtung der Kabel/Adern muss sichergestellt werden, dass kein Wasser in das Modul gelangen kann.

Inbetriebnahme

Die Inbetriebnahme darf nur von qualifiziertem Personal durchgeführt werden. Die Inbetriebnahme darf nur erfolgen, wenn der Zustand des Gesamtsystems den geltenden Richtlinien und Vorschriften entspricht.

STÖRUNGSBEHEBUNG UND WARTUNG

HINWEIS Das Modul ist wartungsfrei und darf nicht geöffnet werden!

Weißt das Modul Beschädigungen an Gehäuse, Rastnasen, Dichtungen, Flachsteckern auf, muss das Modul außer Betrieb genommen werden.

Die Störungsbehebung und Reinigungsarbeiten dürfen nur im spannungslosen Zustand durchgeführt werden. Entfernen Sie das Modul zur Störungsbehebung und Reinigung. Beachten Sie die Hinweise in den anderen technischen Unterlagen.

Prüfen Sie die Unversehrtheit des Moduls sowie alle Flachstecker, Anschlüsse und Pins auf mechanische Schäden, Schäden durch Überhitzung, Isolationsschäden und Korrosion. Prüfen Sie bei Fehlschaltungen die Software, Beschaltung und Parametrierung.

Reinigen Sie das Modul nicht mit Hochdruckreinigern oder Dampfstrahlern. Verwenden Sie keine aggressive Lösungs- oder Scheuermittel.